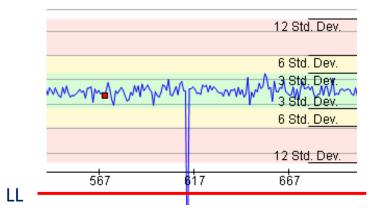
How to predict the Unforeseeable?

Dr. Gunther KARNER optimiSE GmbH

The Power of $[\mathcal{X}]$

SEMICON[®] Europa 2012

9–11 October Messe Dresden, Germany



'Random' Fails – the Challenge in Adaptive Test

- Spot Failures in Devices under Test (DUTs) are among the most notorious sources of yield loss in semiconductor production.
- How to 'control' such a test?

By Sampling?

→ Sampling rate of 10 → Cpk over of 10 fully tested parts before the fail equals 4.71!
 → incapable of predicting 'random' defects!

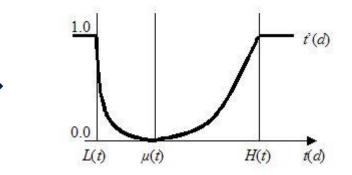
The 'Miracle' and what's best done of it

 \rightarrow 'DUT Response Model'

- Devices, failing in a certain test, often 'announce' that deficiency in specific tests earlier in the flow by showing 'abnormal' readings!
- Thus, not (only) the history of a test may predict its actual result but the outcome of earlier tests on the same DUT!

Our Focus

- Real-time monitoring of specific 'Signature Test' results
- 'Very short-term' predictions
- Test flows are dynamically changed by adding or removing **Adaptive Test Groups**
- Execution of those groups is a function of prior <u>Signature Test readings on the same device</u>


Knowledge Correlations accentuate critical results

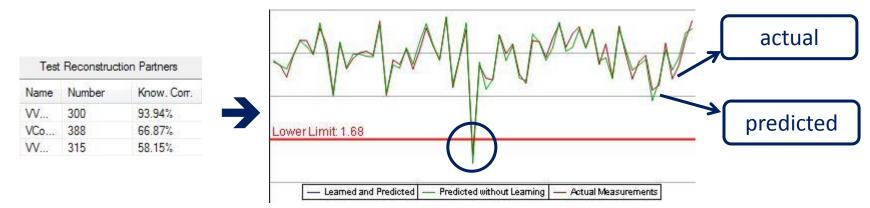
- The crucial ingredient in a reliable DUT Response Algorithm is the determination of the Signature Tests!
- Compute Knowledge Correlations from specific test results:

Define the normalized score t'(d) of a test result t(d) for a test t with limits L(t), H(t) and 'target value' of $\mu(t)$ as:

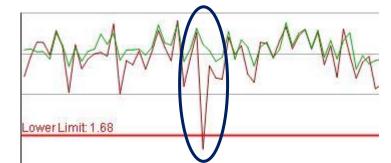
•	1	for	t(d) < L(t)
t'(d) =	F(t) _{lower}	for	$L(t) \leq t(d) \leq \mu(t)$
	F(t) _{upper}	for	$\mu(t) \leq t(d) \leq H(t)$
-	1	for	t(d) > H(t)

 The function F is chosen to stress readings close or beyond test limits

Knowledge Correlations (KCs) point the way


- Strategy: Find Signature Tests by reconstructing measurements in Adaptive Test Groups on a part-by-part scale from the best knowledge-correlated tests
- The reconstruction vehicle is a standard multilayer neural net (→FANN)
- KCs perform better than 'raw' correlations when it comes to spot fails! ('Raw' indicates original test readings.)
- Example: Reconstruct a Test #340 by a Test #300 over one wafer, in particular in the vicinity of the spot fail

SEMICON[®] Europa201

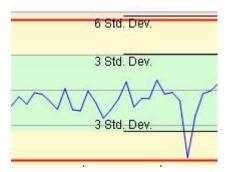

Knowledge Correlations have the edge

Training of FANN over half the wafer not including spot fail

• Same setting, but highest raw-correlated test as predictor:

Name	Number	Raw Corr.
VCo	388	81.59%
MV	386	74.83%
VD	384	61.84%

• If above is scalable \rightarrow #300 is potential Signature Test


Na	Number	# Executions	# Fail Flags
AD	340	245827	53

Line #	Name	Number	Know, Corr.
	W	300	77.71%
2	VCo	388	53.45%
🔲 З	W	315	34.62%

Line #	Name	Number	Raw Corr
1	hvk	330	82.48%
2	DA	419	69.57%
3	DA	405	63.02%

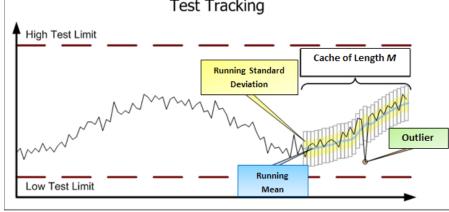
The Decision Criterion

 Test #300 displays distinct spike at the part failing in Test #340, compared to its results just before

To qualify as a **Numerical Indicator** for future potential fails in #340, the graph suggests

- to evaluate the result of #300 at the fail device against a certain 'local average region' of #300
- to calculate that average from the #300-readings at a collection of parts tested just before the defective

The number of free parameters is just two:


- The weight of the 'average' against the spike
- The size of the device window before the fail

 \rightarrow Ockham's razor ...

Feed-Forward Decisions in Real Time

The algorithm is executed in a die-by-die rhythm:

- The most recent results, say [1, N -1], of Signature Tests are kept in memory
- Those readings determine the 'local average regions', against which the results of the Signature Tests at Part N are assessed
- Depending on the 'being inside or outside' scores of the latter, a potential fail in a defect-correlated Adaptive Test Group at the Part N is predicted
- On Device *N+1* the procedure repeats itself, now with the set [2, N] of the Signature Test Tracking Test results as entry of the High Test Limit Cache of Length M 'local average region' Running Standard Deviation calculation
 - And it keeps on going that way...

The Adaptive Group Test Controller

The decision algorithm is the core of a Feed-Forward Controller, called Adaptive Group Test Controller (AGTC), where the latter

- generates the decision to execute Adaptive Groups or not on account of the Signature Test results received in real-time from the tester. Either uni- or multivariat, i.e.,'√' or '∧' combinations of Signature Tests
- hands back in real-time the instruction to execute Adaptive Groups or not to the tester
- however, does not get information about success (i.e., avoiding escapes)
 - NOTE
 - No additional hardware is required to run the AGTC, only a minor one-time adaption of the test program
 - The control over the Adaptive Group Testing remains with the owner of the test program → Interesting for fabless companies...

Actual Realisation of the AGTC

• On a Catalyst, for example, a test group can be easily handled inside an "if" statement (1=execute, 0=skip), where *oatcDo* is the automaton call:

if (oatcDo(oatc,340)==1)
seq Adaptive Group()
{
TestNr(340)...

- What about test time overhead due to the AGTC ?
- On a standard Catalyst, a automaton decision takes about 0.3 ms
- Typically, two to four Signature Tests control an Adaptive Group
- The method works independently of the test regime!

A Showcase Simulation

A Group 'ADC...' is taken as **Adaptive Test Group**:

- Test Time \cong 2 sec (app. 11% of total TT)
- 6 fails over 5 Wafer Sort lots (app.85k parts)

Two **Signature Tests** cover those fails:

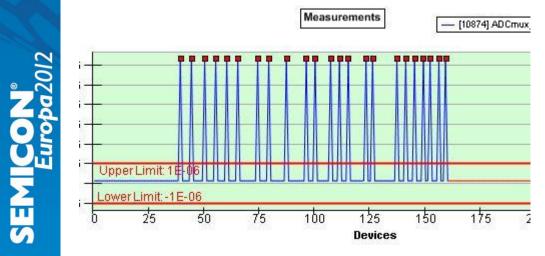
	# Direct Hits	99[3]	596[3]	35[0]	35[0]	199[1]	199[1]
[10546]	4	0	1	1	0	1	1
[2003] IF	4	0	0	1	1	1	1
[10510]	3	1	1	0	1	0	0

Adaptive Test Simulation	Data Explorer 2	Data Explorer 3
Select Recipe File	D:\Data_Compa	anies\inix ADC_10.txt
Select STDF File (s)		Select Folder

Monitoring of #2003 and #10510 permits the dynamic sampling of 'ADC...' over another set of five lots

Start with controller parameters on 'save side':

•	AL	
•	2 .	
E	ATA Performance	
	Adaptive Test Efficiency	100.00 %
]	Gain	
	Global TTR Average	13.96 %
E	Loss	
	Total Escapes (ppm)	0
]	Underlying Data	
	Number of Devices analysed	83750


Line	File	# Devices	Yield	# Esc's (ppm)	TTR [10738]	# Esc's [10738]	# Fails [1073	38]
60	sf	700	83.14 %	0	10.86 %	0	0/8	~~~
102	sf	691	85.53 %	0	11.58 %	0	0/7	
62	sf	692	85.69 %	0	12.72 %	0	0/7	
59	sf	685	85.11 %	0	8.18 %	0	0/7	
66	sf	692	83.09 %	0	10.40 %	0	0/5	
53	sf	685	87.45 %	0	11.68 %	0	0/5	
61	sf	685	85.99 %	0	15.77 %	⁹ app. 2	80 mc	
64	sf	693	82.11 %	0	13.85 %		00 113	J
100	sf	691	87.70 %	0	15.05 %	0	0/3	
101	sf	691	84.80 %	0	9.84 %	0	0/3	

Is that Result good enough? More is in Store...

 Very little fails
 Statistics is a somewhat 'lean'... Nevertheless, widening of controller parameters yields

• A 'local single wafer, single site' problem:

New analysis, add one Signature Test...o.k.!

30 21 I III	
3 ATA Performance	
Adaptive Test Efficiency	100.00 %
3 Gain	
Global TTR Average	34.14 %
E Loss	
Total Escapes (ppm)	0
🗄 Underlying Data	
Number of Devices analysed	83750